Enhanced Solar Energy Absorption by Internally-Mixed Black Carbon in Snow Grains
نویسندگان
چکیده
Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chýlek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ∼2 % of the atmospheric BC burden is cloud-borne, 71–83 % of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73 % of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86 %, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism driven by diffusive vapor transfer likely proceeds too slowly to alter the mass of internal BC while it is radiatively active, but neglected processes like wind pumping and convection may play much larger roles. These results suggest that a large portion of BC in surface snowpack may reside within ice grains and increase BC/snow radiative forcing, although measurements to evaluate this are lacking. Finally, previous studies of BC/snow forcing that neglected this absorption enhancement are not necessarily biased low, because of application of absorption-enhancing sulfate coatings to hydrophilic BC, neglect of coincident absorption by dust in snow, and implicit treatment of cloud-borne BC resulting in longer-range transport.
منابع مشابه
Black-carbon reduction of snow albedo
Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1,2. In this study, we generated and characterized pure and black-carbonladen snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings...
متن کاملToward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing
The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorpti...
متن کاملLight absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters.
Light absorption by particulate impurities in snow and ice can affect the surface albedo and is important for the climate. The absorption properties of these particles can be determined by collecting and melting snow samples and extracting the particulate material by filtration of the meltwater. This paper describes the optical design and testing of a new instrument to measure the absorption sp...
متن کاملRadiative Transfer and Regional Climate Change
We first address the importance of three-dimensional (3D) radiative transfer over mountains/snow in the regional context along with its parameterization in terms of deviations from the conventional plane-parallel model commonly used in climate models. This is followed by a discussion on the development of a new approach for light absorption and scattering by black carbon (BC) and snow grains in...
متن کاملEnergy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption
Novel method doped carbon with nanoparticle Cr2O3 and thin film has been studied in much thought in wavelength range, the doping can help new excellent physical and chemical properties for carbon, this application has a semiconductor feature. Nanocomposite thin film deposited on copper and glass substrates have been created by utilizing Spray Pyrolysis method. The prec...
متن کامل